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J. Phys. A: Math. Gen. 14 (1981) 1577-1585. Printed in Great Britain 

Asymptotic solutions of an elliptic equation system on a 
Riemannian manifold concentrated in the vicinity of a 
phase trajectory 

V S BuldyrevtD and V E NomofilovS 
t Institut fur Theoretische Physik, Freie Universitat Berlin, Arnimallee 3, 1000 Berlin 
(West) 33, Germany 
$ Leningrad Mathematical Institute, Acad. Sci. USSR Fontanka 27, Leningrad, USSR 

Received 8 September 1981 

Abstract. The scalar Helmholtz equation has solutions concentrated in a small vicinity of a 
ray. Outside this vicinity these solutions decrease exponentially. Here solutions with 
similar features are constructed for an elliptic equation system and examples such as the 
linear problems of elasticity theory, crystallo-optics, magnetic hydrodynamics and gravita- 
tion theory are given. 

1. Introduction 

It is well known that a scalar Helmholtz equation AU + W ~ C - ~ U  = 0 at w +CO has 
solutions concentrated in a small vicinity (of w-l” order of magnitude) of a ray, i.e. a 
characteristic of the eikonal equation (VT)’ = c-’. Outside this vicinity these solutions 
decrease exponentially. In the present paper solutions with similar features are 
constructed for an elliptic equation system of a general type. Linear problems of 
elasticity theory, crystallo-optics, magnetic hydrodynamics and gravitation theory give 
particular examples of elliptic systems of that kind. 

The solutions Concentrated in the vicinity of a phase trajectory give the possibility of 
finding the asymptotics for the subsets of eigenvalues of the corresponding operators on 
compact manifolds. It is the most important use of that sort of solution. By integrating 
the solutions concentrated in the vicinity of a phase trajectory with respect to a 
parameter one can find the asymptotic solution of the initial system in the vicinity of the 
ray field singularities where the formulae of the ray method are inapplicable. 

In a series of previous articles the solutions concentrated in the vicinity of the 
geodesic for the Laplace operator 011 a compact manifold were constructed (Babich and 
Buldyrev 1972, Babich and Lazutkin 1968). Similar sollitions were obtained for the 
special case of magnetic hydrodynamics (Buldyrev 197 l), isotropic elasticity theory 
(Kirpicnikova, 1971), and electrodynamics (Pankratova 197 1). 

0 On leave from Department of Theoretical Physics, University of Leningrad, USSR. 
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2. Formulation of the problem. Phase trajectories and linearisation of the 
characteristic system 

Let V,,, be a smooth (n + 1)-dimension Riemannian manifold with metric tensor field 
g, (x). We treat the elliptic system 

V, [AfS(x )V,U‘] +w ‘BIr(x) U‘ = 0, j -  0 , l . .  . , n  (2.1) 

with respect to vector field U ( x )  in a domain nc V,,,. Here AfS(x) and Bl,(x) are 
smooth real tensor fields in Cl of the 4th and 2nd rank respectively, V, is an operator of 
covariant differentiation and w is a parameter. Here and later on we imply summation 
from 0 to II. over repeating indices. The tensors Afs and B,, are symmetrical and positive: 

Bir = Br, (2.2) 

BIX1,$‘ 2 b  (t])’ a > o  b >O. (2.3) 

A’” =A”’ 
I ,  ?I 

] =o 
AjSrlIrl:~a 2f (rlfY 

I,] =o 

Here 7; and ,$I are arbitrary real tensor fields of the 2nd and 1st rank, respectively?. 

for the vector field U ( x )  in a vicinity of the fixed phase trajectory. 
The object of this paper is the construction of the high-frequency asymptotics w + 00 

2.1. The Hamilton-Jacobi equation and phase trajectories 

Let H(x, p )  be one of the positive roots of the equation 

detl)AjS(x)pips -H2Bj,(x)JI = 0. 

The equation 

H (x, V T )  = 1 

is called the Hamilton-Jacobi equation (or eikonal equation). It follows from formulae 
(2.2)-(2.4) that the H(x, p) function is positive and homogeneous to first order with 
respect to p, and the matrix 

C,r(x,p) =Aj:(x)pips -H’(X,p)Bjr(x) (2.6) 
is symmetrical. 

The characteristics of equation (2.5) i.e. the curves S = { x ‘ ( t ) ,  p‘(t)} in the 2n + 2  
dimensional phase space {x, p}, defined by the solutions of the characteristic Cauchy 
system 

dr  d H  
dt api -=PI- H(x, P) = 1 

are called the phase trajectories of the system (2.1). The projections of the phase 
trajectories on a V,,, manifold are usually called rays in diffraction theory. According 

+ The equation (2.1) characterises the propagation of the harmonic waves with the frequency w in the 
inhomogeneous anisotropic elastic medium, if we take A;: as an elasticity tensor and B,, = pgj,  where p is the 
density of the medium. 
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to the Euler theorem about the homogeneous functions 

therefore, from (2.8) it follows that d.r/dt = 1. It gives the possibility of parametrising 
the phase trajectory with the values of T .  

2.2. Transversal stratification 

Let S be a phase trajectory and S' be the corresponding ray. If S is defined in local 
coordinates {xo, . . . , x " }  by the equations 

XI  = o  Po= 1 pi = o  i = 1,. . . , n (2.10) 0 
X = T  

then the coordinates {xo, x ', . . . , x " }  are called transversal with respect to S ' .  

Lemma 1. (i) Let S be a fixed phase trajectory. Then there exist a set of maps on the 
manifold Vntl, mapping the ray S ' ,  the local coordinates on each map being transversal 
with respect to S ' .  

(ii) In order that the curve S ,  defined by equations (2. lo), be a phase trajectory it is 
necessary and sufficient that 

Hxs = 0 Hpt = 0 A=1 i = 1,. . . , n. (2.11) 

Here and later on we use the notations 

Po= 1, P, = o  

where F ( x ,  p) is a scalar or a tensor. 
To each point of the ray S' there corresponds a vectorp(.r) = (p0(7), . . . , pn (7)). The 

vectors orthogonal top (7)  in the gij  metric form an n-dimensional linear space +s (7). A 
set of pairs {T, +s (7))  is called a transversal stratification of the ray S ' .  The transversal 
stratification is an analogue to normal stratification of the geodesic for Laplace 
operators. From the local point of view & ( T )  may be treated as an n-dimensional 
hyperplane on the V,, manifold, which intersects the ray S' at the point corresponding 
to the given value of the parameter T.  Therefore, the transversal with respect to the S' 
coordinates is interpreted in the following way: the equality x = T defines a point on S',  
and variables x i  (1 s i s n) define a point on & ( T ) .  

2.3. Canonical system in the linear approximation 

We shall treat a linear system of equations 

(2.12) 

(2.13) 
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are matrices of order n x n (1 s i, s s n ) ,  depending on T andLTis the matrix transposed 
to L. 

It follows from lemma 1 that the system (2.12) is a linearisation of the canonical 
system (2.7) in the vicinity of the fixed phase trajectory S in coordinates transversal with 
respect to S ' .  

We call the curves (7, y ( 7 ) )  on the transversal stratification of the ray S',  defined by 
solutions of the system (2.12), the rays in the linear approximation. Moreover the ray S' 
itself is defined by trivial solution Y ( T )  = 0. The rays in the linear approximation are 
important when concentrated solutions of the system (2.1) are constructed. 

Let s be the length of the ray S' ,  measured from the points =so. It is easy to prove, 
using equations (2.7), (2.8) and (2.11), that the values s and T on the ray S' are 
connected with the equality 

3. Formal asymptotic expansion of the solution and the parabolic equation 

The initial system (2.l).is invariant to the choice of the local coordinates on V,,,. Let us 
assume that the local coordinates are transversal with respect to the ray S' .  We 
introduce the 'reduced' coordinates 

Let us seek the vector U ( x )  in the form of formal asymptotic expansion 

First we shall derive a recurrent system for wk (7, v) vectors. Let us represent theA;:(x) 
andB,, (x) coefficients and the Christoffel symbols r!, in the system (2.1) by Taylor series 
in the vicinity of the ray S' and substitute the expansion (3.2) instead of U. By equating 
to zero the coefficients of the formal asymptotic series in the left-hand side of (2.1) we 
obtain the recurrent system for the vectors wk : 

ewo = 0 (3.3) 

The matrix C is defined by the equality (2.6) andZj are the matrix differential operators 
of order min(j, 2). The operators Zl and Z2 are of the form 
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Here the following notation is introduced: 

M is the antisymmetric matrix with components 

l a  
z dx' )' 

M .  =-- (A! ' -  
I' (3.7) 

and 2 is the 'parabolic operator' 

a 
2 = 2i --+ (R V, V) + 2i(Lv, V) - (Tv, v )  + iTrL (3.8) 

a7 

where the matrices R, L, T are defined by equalities (2.13). 
Let I H  (x ,  p )  = ker C (x ,  p )  be the kernel of the operator C (2.6). We assume that S is 

a phase trajectory of a constant multiplicity, i.e. the multiplicity of the root H(x ,  p )  of 
the equation (2.4) and hence the dimension of the subspace I H  ( x ,  p )  remains constant 
on S .  

Lemma 2. Let J H  (7, v )  be a subspace of vectors which can be represented in the form 
w(7, v ) $ ( ~ )  where W ( T ,  v )  is an arbitrary smooth function, $ E  I H ,  and JA(7 ,  v )  is its 
orthogonal complement in the H i j  metric. Then 

2 1 J H  c J A .  

Proof. Taking into account the identity 

we obtain 

(3.10) 

because the matrix C is symmetric. 
It follows from equation (3.3) that 

WO E JH WO(7, v )  = WO(77 v )$(7)  * E I H .  (3.11) 

We seek the vectors wk for k 2 1 in the form 

wk (7, v )  wk (7, v)$k (7) + w: (7, v )  (3.12) 

where $k E I,, W: E Jh. In general the inhomogeneous equations (3.4) are unsolvable 
with respect to wk. It is necessary and sufficient for their solvability that 

(3.13) 

It follows from the equality (3.11) and lemma 2 that the equation (3.4) for k = 1 is 
solvable, and 

w: = e - l z l  WO (3.14) 
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where e-' is the inverse operator of e on the subspace J i .  Taking into account (3.12) 
and (3.14) the condition (3.13) for k = 2 takes the form 

2, w1+22 WO = 2 , ( w  I$,) + (L&e-121+22) WO E J A  

hence 

(zle- I 2 1  + 2 2 )  WO E J A  (3.15) 

because 2 1 ( w  1$1) E J A  from lemma 2. The condition (3.15) makes it possible to obtain 
the vector WO. It is easy to prove that (3.15) is equivalent to the condition 

-21[i{$p, V>-C$x, vHwo+2*($wo) EJA (3.16) 

which does not contain already the operator e-'. It follows from the equality (3.10) for 
w = wo indeed 

e-lYl($wO)+[i{$p, v > - { J x ,  v)IwO EJH. 

According to the lemma 2 

21&-121($wo)  +21[i{$p, v>-{$~, v>lwOE2lJH CJA 
which proves the equivalence of formulae (3.15) and (3.16). Substituting the operators 
2, and Lf2 in (3.16) and using the identity (3.9) we obtain 

+i[%~p,,$x* - &x*$p,> +fi$Iwo 2 E J A .  (3.17) 

In particular the vector 2 had to be orthogonal to the vector 4 because 4 EJA. The 
vector in the square brackets in (3.17) is obviously orthogonal to $ because of (3.7) and 
(3.9). Hence the w ~ ( T ,  v )  function should satisfy the equation 

(3.18) 

It is possible to normalise the vector $ ( T )  in an arbitrary way at the expense of 
correspondingly changing the function w ~ ( T ,  v) (3.11). It is convenient to set 

1 
*=-6 6 E I H  (B6Y 0 = 1. 

4 4  

Then equation (3.18) and condition (3.17) take the form 

(3.19) 

2 w o  = 0 (3.20) 

(3.21) 

If H ( x , p )  is a simple root of the equation (2.4), then the subspace IH is one- 
dimensional, the vector 5 is defined by conditions (3.19) uniquely, and (3.21) turns into 
an identity. In the case when the dimension of the subspace IH is larger than unity, the 
condition (3.21) makes it possible to obtain the vector 6 ( ~ )  uniquely if initial data ~ O ( T ~ )  
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are known. It is not difficult to show that the condition (3.21) is equivalent to the system 

(3.22) 

for the coordinates (a1 ,  . . . , a,) of the vector i ( ~ )  in orthonormal basis of the subspace 
fH where the scalar product is defined by the equality 

(‘54) = (E, 4).  
The matrix Nsi (7) is antisymmetric therefore the expression 

is the first integral of the system (3.22) in agreement with the normalisation condition 
(3.19) of 5. 

4. Solutions of the parabolic equation 

The equation 

2 G = O  (4.1) 

where the operator 2 is defined by the equality (3.8) is usually called parabolic equation 
in the diffraction theory. In fact 2 is a Schrodinger operator on the transversal 
stratification {T, 4s (T)} of the ray S ’ .  It is important that the matrix coefficients of the 
canonical system in the linear approximation (2.12) coincide. The mentioned coin- 
cidence makes it possible (as well as in the case of Laplace operator) to construct a 
rather wide class of the parabolic equation solutions if solutions of the canonical system 
(2.12) are known. We are interested in solutions of the equation (4.1) decreasing for 
[VI -9 03. 

Let us take 

Gd7, v )  = ~ ( 7 )  exp[@77)~, v)I  (4.42) 

where U ( T )  is a scalar function and r ( T )  is a symmetric n x n matrix with the positive 
imaginary part 

r=rT I m r > O .  (4.3) 

(da/dT) + ;a Tr(R +L) = 0 (4.4) 

(dT/d . r )+rRr+rL+LTT=O.  (4.5) 

Substituting (4.2) in equation (4.1) we obtain the system of equations for a and r: 

Let the matrices Y and Q of order it x it depending on T satisfy the canonical system in 
the linear approximation 

(d/dT)Y = R Q + L Y  (d/dT)Q = -LTQ - TY (4.6) 
and the conditions 

YTQ -QTY = O  Y’Q -Q+Y =iE. (4.7) 

Here E is the unity matrix, and + denotes the Hermitian conjugation. Because the left 
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parts of the equalities (4.7) are first integrals of the system (4.6) it is always possible to 
satisfy conditions (4.7) at the expense of a suitable choice of initial data for the matrices 
Y and Q. 

One can directly check that the matrix r = QY-' is a solution of the equation (4.5). 
Conditions (4.3) are also fulfilled: 

~ - ~ T = Q ~ - ~ - ~ T - I Q T =  y T - ' ( y T ~ - ~ T y ) y - - l = o  

Im I'= (1/2i)(r-r+) = (1/2i)Y+-'(Y+Q-Q*Y)Y-l=$Y+-'Y-'>O. 

We multiply the first of the equations (4.6) by Y-' 

(dY/dT) Y-'=RQY-'+L =RT+L. 

Using the last equality and the well known identity 

(det Y)-' (d/dT) det Y = Tr (dY/dT) Y-' 

equation (4.4) can be easily integrated: 

a (7) = constant (det Y (T))-'". 

One can prove (Babich and Buldyrev 1972), that according to the equalities (4.7) 

det Y (7)  # 0. 

Therefore the function 

G0(7, v )  = (det Y)-"* exp[$i(QY-'v, v)] (4.8) 

is a solution of the parabolic equation (4.1) decreasing at lvl +CO. 

It is possible to construct the sequence of solutions G, of the parabolic equation 
proceeding from the solution Go with the help of so-called creation and destruction 
operators 

Here 
conjugation. 

and q, denote columns of the matrices Y and Q, and an asterisk the complex 

The commutation equalities follow from (4.6) and (4.7) 

[A,, A k l = O  [A,, Ak+1 = 6 ,k  (4.10) 

[.LE?> 4 1  = 0 [.LE?, AT] = 0 j , k = l , 2  , . . . ,  n (4.11) 

where f i ]k  is the Kronecker symbol. Applying the operators A, to the function G ~ ( T ,  v )  
we get zero because 

A,Go = Al{a exp[$i(rv, v)]} = a exp[$i(rv, v) ] [ ( ry , ,  z)) -(q,, v)] = 0. (4.12) 

According to (4.11) the functions 

G, = G,, ,, = (A:)mi . . . (A,')"-G0 = P,(T, v )  exp[$i(rv, v)] 

are solutions of the parabolic equation (4.1). Here m = ( m l , .  . . , m,,), m, are non- 
negative integers, P, (7, v )  are polynomials in v of order Im 1 = m ' +. . . + m, with 
coefficients depending upon T .  The linear independence of the functions G, follows 
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from the orthogonality relations 

G,G$ dv = ( 2 ~ ) ~ ’ ~ m  !a,,,,, I 4s 
which can be easily checked with the help of integration by parts and equalities (4. lo), 
(4.12). 

It can be proved that G, (T ,  v) are eigenfunctions of the elliptic operator XT= ATAj 
on + s ( ~ )  with eigenvalues equal to ( m  1 at fixed The functions G, form a complete 
basis in L2(&(7)). 

Thus we have constructed in the zeroth approximation a sequence of formal 
asymptotic solutions 

Uo,, (T , Y )  = ~ ( T ) S ( T ) - ” ~  eiwTGm (7, v)  

of the initial system (2.1) which are concentrated in a small vicinity (of w-lI2 order of 
magnitude) of the ray S ’  and decrease exponentially outside of this vicinity. 

The recurrent system (3.4) allows in principle to obtain the subsequent terms of the 
formal asymptotic expansion (3.2) as well. 

In conclusion we shall mention that the method is also good for the construction of 
localized solutions for scalar elliptic equations on a Riemannian manifold. 
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